12.2) Introduction to Vectors

1. Oriented Line Segments:

In geometry, a line segment is defined as a subset of a line consisting of two distinct points
of the line, known as the segment’s endpoints, and all points of the line lying inbetween
those two endpoints. We shall refer to this as the classical definition of a line segment.

For our purposes, it is useful to adopt a slightly more general definition. We shall omit the
stipulation that the two endpoints must be distinct points—i.e., we shall allow for the
possibility that they could be the same point. In this case, there are no points of the line
lying inbetween the two endpoints, and the line segment consists of a single point of the
line. (In contrast, when the two endpoints are distinct, the line segment consists of infinitely
many points, because there are infinitely many points between the two endpoints.)

We shall refer to a line segment with two distinct endpoints as a proper line segment, and
we shall refer to a line segment with only one distinct endpoint as an improper line
segment. (Caution: “improper” does not mean illegitimate. An improper line segment is a
legitimate line segment, according to our definition, just as, in arithmetic, an improper
fraction is a legitimate fraction, and, in set theory, an improper subset is a legitimate
subset.)

The length of a line segment is the distance between its two endpoints. The length of a
proper line segment is a positive real number, and the length of an improper line segment is
zero.

An oriented line segment is a line segment where one endpoint has been designated the
initial point and the other endpoint has been designated the terminal point. If the line
segment is proper, the initial and terminal points are distinct points, but if the line segment is
improper, then they are the same point.

We say an oriented line segment extends from its initial point to its terminal point.

The initial point is also known as the tail. The terminal point is also known as the the tip or
head.

If an oriented line segment is proper, then, when we draw the line segment, we place an
arrowhead at the terminal point. We do not use an arrowhead when drawing an improper
oriented line segment; such a segment consists of a single point, which is depicted as a dot.

We name points with capital letters. If an oriented line segment has initial point 4 and
terminal point B, then it may be denoted as 4B. (In this notation, we always write the initial
point first and the terminal point second.) This is a symbolic representation of the oriented
line segment, not to be confused with an actual drawing of the segment itself.



Bear in mind, we are allowing for the possibility that the initial and terminal points of an
oriented line segment may be the same point. If we name the former point 4 and the latter

point B, we are not implying the points are distinct. We may have 4 = B, in which case 4B
g
is an improper oriented line segment, or we may have 4 + B, in which case 4B is a proper
—_— —> —
oriented line segment. (If 4 = B, then 4B could also be written as A4 or BB.)

The length of 4B is denoted |E| This is also referred to as the magnitude of 4B. (Some

books use the notation ||/E) ” .)

If an oriented line segment is proper, then it points in a particular direction, which we refer to
as the direction of the segment. A proper oriented line segment may thus also be referred
to as a directed line segment. In contrast, an improper oriented line segment has no

direction (we can also say its direction is undefined). In the notation E, the arrow symbol
always points rightward, but this does not necessarily reflect the actual direction of the
segment itself (or even if it has a direction).

(Caution: In geometry, there is something called a ray. This is a subset of line consisting
of one point of the line, known as the vertex, and all points of the line lying on one particular
side of the vertex. Whereas a line extends infinitely far in two opposite directions, a ray

extends infinitely far in only one direction. In a geometry class, the notation 4B would
represent a ray, rather than an oriented line segment. In this class, the notation will always
refer to an oriented line segment, never a ray. In fact, we will never deal with rays at all in
this class. If you see a drawing of a line segment with an arrowhead at one end, it should
always be interpreted as a directed line segment, rather than a ray.)

Oriented line segments can exist in one-dimensional space, two-dimensional space, or
three-dimensional space. (Higher-dimensional spaces can be theorized, but they cannot be
visualized, because we have only three physical dimensions available to us.)

One-dimensional space is simply the traditional number line. In this setting, a directed line
segment can have only two possible directions. Assuming the number line is drawn
horizontally, the two possible directions are leftward and rightward. If the terminal point lies
to the right of the initial point, then the direction is rightward, whereas if the terminal point
lies to the left of the initial point, then the direction is leftward.

In two-dimensional space or three-dimensional space, a directed line segment can have
infinitely many possible directions. A precise direction can be specified through the use of
angles. In Section 12.3, we will develop this concept rigorously; for now, we assume the
concept of direction is intuitively clear.

In two-dimensional or three-dimensional space, we shall adopt the Cartesian coordinate
system. In two-dimensional space, we have two coordinate axes, the x axis (which is
horizontal) and the y axis (which is vertical); this space is thus referred to as the x,y plane.
In three-dimensional space, we have three coordinate axes, the x and y axes (which are



perpendicular to each other and which lie in a horizontal plane) and the z axis (which is

vertical); this space is thus referred to as x,y,z space.

e Every pointin the x,y plane corresponds to a unique ordered pair of real numbers,
which are known as the point’s x and y coordinates; for instance, the ordered pair
(x1,y1) represents the point in the x,y plane that aligns perpendicularly with the value
x1 on the x axis and with the value y, on the y axis. The two axes intersect at the
point representing 0 on each axis; this point, represented by the ordered pair (0,0), is
called the origin and is usually named by the letter O.

e Every pointin x,y,z space corresponds to a unique ordered triple of real numbers,
which are known as the point’s x, y, and z coordinates; for instance, the ordered
triple (x1,y1,21) represents the point in x,y,z space that aligns perpendicularly with the
value x; on the x axis, with the value y, on the y axis, and with the value z, on the =z
axis. The three axes intersect at the point representing 0 on each axis; this point,
represented by the ordered triple (0,0,0), is called the origin and is usually named by
the letter O.

An oriented line segment is said to be a standard-position line segment if its initial point
is the origin. An oriented line segment whose initial point is not the origin is said to be a
non-standard-position line segment.

Example One: In the x,y plane, the oriented line segment from (0,0) to (-7,—4) is a
standard-position line segment, whereas the oriented line segments from (3,-1) to (5,4)
and from (6,2) to (0,0) are non-standard-position line segments. Furthermore, the oriented
line segment from (0,0) to (0,0) is a standard-position line segment, whereas the oriented
line segment from (3,-1) to (3,—1) is a non-standard-position line segment. In other words,
if O =(0,0), 4 =(-7,-4), B=(3,-1), C=(5,4), and D = (6,2), then O_A) and 0_0>are
standard-position line segments, whereas B_()?, DO and BB are non-standard-position line
segments.

2. Algebraic Formulas for Oriented Line Segments:

In the x,y plane, if point 4 has coordinates (x;,y;) and point B has coordinates (x»,y2), then,
—
by the Distance Formula, |AB| = J(x; -x1)2+ (72 —y1)?. Notice thatif 4 = B, then x; = x;

and y, = y», in which case the formula gives us a result of 0, but if 4 + B, then x; # x, or
v1 # y2, and the result is a positive real number.

In x,y,z space, if point 4 has coordinates (x1,y1,z1) and point B has coordinates (x»,y2,z2),
—_
then, by the Distance Formula, |AB| = J(x; —-x1)2+ (2 —y1)? +(z2—z1)?. Notice that if

A = B, then x; = x, and y; = y» and z; = z,, in which case the formula gives us a result of
0, butif 4 # B, then x; # x, or y; # y, or z; # z,, and the result is a positive real number.

Example Two: Inthe x,y plane, if 4 = (2,-7) and B = (-3,-1), then
[4B| = J3-27+ (1--7)7 = 57+ 6 = JeT.




Example Three: In x,y,z space, if 4 = (1,4,7) and B = (3,7,13), then
|AB| =JE-1D2+ (-7 +(13-7)2 = 22+32+67 = /49 = 7.

In the Cartesian coordinate system, geometrical objects can be represented by algebraic
equations. For instance, in the x,y plane, the equation 2x — 3y = 6 represents a line, the

equation y = x? represents a parabola, and the equation x> + y? = 25 represents a circle.

Likewise, directed line segments can be represented by algebraic equations. Before we

address this topic, we must first discuss how to write parametric equations for a line in

either two or three dimensions.

In the x,y plane, let (x;,y1) and (x2,y2) be two distinct points on a line. Let a = x, —x;, and
let b = y, —y1. Because (x1,y1) and (x2,y,) are distinct, « and » cannot both be zero. (If a is
nonzero, then the line is nonvertical and has slope £.) The line can be represented
parametrically by the equations x = x| + at, y = y1 + bt, where t € (—o,0). The variable ¢ is
known as an independent parameter.

In x,y,z space, let (x1,y1,z1) and (x2,y2,z2) be two distinct points on a line. Leta = x; — x,
leth =y, —y;, andlet ¢ =z, —z;. Because (xi1,y1,z1) and (x2,y2,z2) are distinct, a, b, and ¢
cannot all be zero. The line can be represented parametrically by the equations x = x| + at,
y =y +bt, z= 2z +ct, where t € (—0,0). The variable ¢ is known as an independent
parameter.

Once a line in either two or three dimensions has been parameterized in accordance with
the above equations, every point on the line corresponds to a unique real value of ¢, and
every real value of ¢ corresponds to a unique point on the line.

Since a directed line segment is a subset of a line, the parametric equations for the line can
likewise serve as parametric equations for the segment; we need only restrict the values of
the parameter .

In the x,y plane, let 4 = (x;,y1) and B = (x2,y2) be two distinct points. Let a = x, —x;, and

let b = y» —y1. Then the directed line segment 4B has parametric equations x = x| + at,
y =y1 +bt, where t € [0,1]. Notice that the initial point 4 is generated when ¢ = 0 and the
terminal point B is generated when ¢ = 1. Values of ¢ between 0 and 1 generate points on

=
AB between 4 and B.

In x,y,z space, let 4 = (x1,y1,z1) and B = (x2,y2,z2) be two distinct points. Leta = x; — xi,

let b =y, —y1, and let ¢ = z, — z;. Then the directed line segment 4B has parametric
equations x = x; +at, y =y + bt, z = z; + ct, where t € [0,1]. Notice that the initial point 4
is generated when ¢ = 0 and the terminal point B is generated when ¢ = 1. Values of ¢

between 0 and 1 generate points on 4B between 4 and B.

Example Four: Inthe x,y plane, let 4 = (-3,5)and B = (6,-1). a=6--3 =9 and

—
b =-1-5=-6. Sothe directed line segment 4B has parametric equations x = -3 + 9¢,
y =5-6t, where r € [0,1].



Example Five: Inx,y,z space, let4 = (4,-1,-9)and B = (-2,-6,3). a =-2-4 = -6,

—
b=-6--1=-5 andc=3--9 =12. So the directed line segment 4B has parametric
equations x =4 -6t, y = -1 -5¢, z = -9+ 12t, where ¢ € [0, 1].

3. Equivalence of Oriented Line Segments:

Two oriented line segments in the same dimensional setting are said to be equivalent to
each other if they have the same length and if they have the same direction (or both have
no direction).

Example Six: Given a horizontal number line, the following four directed line segments are
equivalent, because they all have length 6 and are all directed leftward:

e The directed line segment whose initial point is at 15 and whose terminal point is at

9.

e The directed line segment whose initial point is at 2 and whose terminal point is at
—4.

e The directed line segment whose initial point is at 0 and whose terminal point is at
—6.

e The directed line segment whose initial point is at —7 and whose terminal point is at
—-13.

Example Seven: In the x,y plane, let 4 = (0,0), B = (3,4), C = (6,0), and D = (9,4). Then
AB and CD are equivalent, because they both have length 5, and they both have the same

direction. (We have not yet rigorously discussed direction, but notice that lines 4B and CD
are parallel, because they both have slope %, and so these lines have the same angles

relative to the x and y axes.)

Can we find a general principle to determine if two oriented line segments are equivalent?

Yes we can:

e Inthe x,y plane, let 4 = (x1,31), B = (x2,32), C = (x3,53), and D = (xs,ys). Then AB
and CD are equivalentifand only if x4 —x3 = x; —x;and ys —y3 = y2 — y1.

e In X,y,z Space, let4 = (xl,yl,zl), B = ()Cz,yz,Zz), C= (X3,y3,Z3), and D = (X4,y4,Z4).
Then 4B and CD are equivalentifand only if x4 —x3 = x2 —x;and ys —y3 = y2 — 1
and Z4 —2Z3 = Zp—Z1.

Example Eight: In x,y,z space, if 4 = (3,-7,5), B = (-2,8,10), C = (-5,-4,-1), and

D = (-10,11,4), then AB and C_D) are equivalent, because —10 — -5 = -2 — 3,
11--4=8--7, and4—--1=10-5.

4. Vectors Defined As Equivalence Classes:

A vector is an equivalence class of oriented line segments. In other words, it is a set
consisting of all oriented line segments having a particular length and a particular direction



(or no direction); all segments in the set are equivalent to each other, and every segment
equivalent to any segment in the set is included in the set. Each vector encompasses
infinitely many oriented line segments, all of which have different initial points and different
terminal points. These oriented line segments may be referred to as members of the
equivalence class or as representations of the vector.

This may be the first time you have been formally introduced to the concept of an
equivalence class. However, it is a concept you are informally familiar with, from basic
arithmetic. A rational number is an equivalence class of fractions. In other words, it is a set
consisting of all fractions having a particular ratio between the numerator and the
denominator; all fractions in the set are equivalent to each other, and every fraction
equivalent to any fraction in the set is included in the set. Each rational number
encompasses infinitely many fractions, all of which have different numerators and
denominators. These fractions may be referred to as members of the equivalence class or
as representations of the rational number. For instance, the rational number “one half” is
the equivalence class {1, =L, 2 =2 3 = 4 4

When we are dealing with two equivalent oriented line segments, we can say, speaking
formally, that they represent the same vector, or are representations of the same vector;
however, speaking informally, we can say that they are the same vector. (But you must
bear in mind that the vector is not just these two oriented line segments; it comprises
infinitely many oriented line segments.)

Recall that oriented line segments can exist in one-dimensional space, two-dimensional
space, or three-dimensional space. Consequently, vectors can be classified as
one-dimensional vectors, two-dimensional vectors, or three-dimensional vectors.
Henceforth, we will pay no further attention to one-dimensional vectors; we will study only
two-dimensional and three-dimensional vectors.

As noted above, a vector is an equivalence class comprising infinitely many oriented line
segments, all of which have different initial points. Exactly one of these has its initial point
at the origin (i.e., exactly one is a standard-position line segment, and all other members of
the class are non-standard-position line segments). We refer to this unique member of the
class as the vector’s standard-position representation. It is also referred to as the vector
in standard position.

If we know any representation for a vector, we can find the vector’s standard-position
representation. We already know that the initial point will be the origin, so we only need
calculate its terminal point. Let us refer to the terminal point as (a,b) in the two-dimensional
case and (a,b,c) in the three-dimensional case. To compute these coordinates, we can
apply the formulas discussed earlier.

e Inthe x,y plane, if 4 = (x1,y1), B = (x2,2), C = (x3,y3), and D = (x4,y4), thenﬁ
and CD are equivalent if and only if x4 —x3 = x; —x; and y4s — y3 = y2 —y1. Suppose
4B is known and CD is the standard-position representation that we wish to find. We
substitute (a,b) for (x4,y4) and (0,0) for (x3,y3), giving us the following equations:

1. a=x—x
2. b=y,—y



e Inx,y,zspace, if 4 = (x1,y1,21), B = (x2,y2,22), C = (x3,¥3,23), and D = (x4,y4,24),
then 4B and CD are equivalentif and only if x4 —x3 = x> —x; and ys —y3 = y2 — i
and z4 —z3 = z; —z;. Suppose 4B is known and CD is the standard-position
representation that we wish to find. We substitute (a,b,c) for (x4,y4,z4) and (0,0,0)
for (xs3,y3,23), giving us the following equations:

1. a=x—-x
2. b=y2—y1
3. C =2Z)—Z]

Example Nine: If one representation of a three-dimensional vector has initial point
(4,-5,11) and terminal point (-2,6,7), then the vector in standard position will have terminal
point (a,b,c) = (-2-4,6—-5,7—11) = (-6,11,-4).

5. Component Notation for Vectors:

If a two-dimensional vector in standard position has terminal point (a,b), then the vector
may be denoted < a,b >. This is known as component notation or component form for
the vector. Bear in mind, this notation refers to the vector itself (i.e., the entire equivalence
class), not just to the vector’s standard-position representation. Thus, the notation < a,b >
may be applied to each of the infinitely many oriented line segments belonging to the
equivalence class.

Similarly, if a three-dimensional vector in standard position has terminal point (a,b,¢), then
the vector may be denoted < a,b,c >.

In the notation < a,b >, we refer to a as the first component and to b as the second
component.

In the notation < a,b,c >, we refer to a as the first component, to b as the second
component, and to ¢ as the third component.

The magnitude of the vector < a,b > is ya? + b>. This may be denoted |< a,b >|.

The magnitude of the vector < a,b,c > is ya* + b*> + ¢>. This may be denoted |< a,b,c >|.

Example 10: The magnitude of the vector < 2,-6,4 > is ,[22 + (-6)2 + 42 = /56 = 2/14.

If a two-dimensional vector has a representation where the initial point is (x;,y;) and the
terminal point is (x2,y2), then its component form, < a,b >, can be found from the equations
a=xy—xyand b =y, —y.

If a three-dimensional vector has a representation where the initial point is (x1,y1,z1) and the
terminal point is (x2,y2,22), then its component form, < a,b,¢ >, can be found from the
equationsa =x;—x;andb =y, —y;andc =z, — z;.



Example 11: In the x,y plane, if 4 = (4,6) and B = (7,1), then 4B has component form

—
<7-4,1-6>=<3,-5> Inx,yzspace,ifd = (3,-7,5) and B = (-2,8,10), then AB has
component form < —2-3, 8—--7, 10-5 >=< -5,15,5 >.

For any vector < a,b > and any point (xo,y0) in the x,y plane, the vector has exactly one
representation whose initial point is (x¢,y0). The terminal point of this representation is the
point (xo + a,yo + b). We refer to this representation as the vector placed at (xo, o).

For any vector < a,b,c > and any point (xo,y0,2z0) in x,y,z space, the vector has exactly one
representation whose initial point is (x¢,y0,z0). The terminal point of this representation is
the point (xo + a,y0 + b,zo + ¢). We refer to this representation as the vector placed at

(x0,20,20).

Example 12: If the vector < -8, 14 > is placed at (3,-9), then its terminal point will be
(3-8,-9+14) = (-5,5). If the vector < 2,—1,7 > is placed at the point (-9,13,-11), then its
terminal point willbe (-9 +2,13 +-1,-11+7) = (-7,12,-4).

Given any point (x1,y:) in the x,y plane, we may refer to the vector < x,,y; > as the
position vector for that point. Given any point (x;,y1,z1) in x,y,z space, we may refer to the
vector < x1,y1,z1 > as the position vector for that point. The position vector for any point is
usually depicted in standard position, so the initial point is the origin and the terminal point is
the given point. (Of course, the vector has infinitely many representations, but if we are
thinking of the vector as the position vector for the specified point, then the vector’s
standard-position representation is the one we would want to depict.)

Example 13: The position vector for the point (-2,5) in the x,y plane is < -2,5 >, which we
would depict as the directed line segment 04, where O = (0,0) and 4 = (-2,5).

6. Vector and Scalar Symbols:
A real number value is known as a scalar.

A vector or a scalar may be represented by a single letter; in the case of a scalar, we almost
always use a lowercase letter, but in the case of a vector, we may use either a lowercase or
a capital letter (with the former being more common). In printed text, a letter representing a
vector appears in boldface type, while a letter representing a scalar appears in normal type.
When writing by hand, we cannot use boldface, so we indicate that a letter represents a
vector by affixing the “hat” symbol atop the letter. For example, a vector may be expressed
as w in printed text or as W by hand.

Once we have named a vector with a particular letter (in boldface type or with the hat), then
we may use that same letter in normal type and without the hat to represent the magnitude
of that vector. In other words, w = |w| = |#|. For example, if w =< 5,—12 >, then w = 13.

Furthermore, we may affix subscripts to the given letter (in normal type and without the hat)



to represent the vector’s components. In the preceding example, we would have w; = 5
and w, = —12. More generally, if a is a two-dimensional vector, then a =< a,,a, >, and if a
is a three-dimensional vector, then a =< ay,a>,a3 >.

When reading aloud, a may be pronounced “vector a” and a may be pronounced “scalar a.”

For a two-dimensional vector a, a = ,/(a1)? + (a2)?>. For a three-dimensional vector a,

a= 1/(611)2 +(a)? + (a3)*.

Example 14: Ifa =< 9,-6 >, thena = /9% + (-6)? = J117 =3/13. Ifa=<2,7,-1 >,
thena = [22+ 7>+ (-1)? = /54 =3/6.

In either two dimensions or in three dimensions, the zero vector is the equivalence class
consisting of all oriented line segments having zero length and no direction—i.e., all oriented
line segments where the initial point is also the terminal point (in other words, all improper
oriented line segments). The zero vector is denoted 0 or 0. Every representation of the
zero vector (i.e., every member of the equivalence class) consists of a single point and is
depicted as a dot. In standard position, this point is the origin. In component form, the
two-dimensional zero vector is < 0,0 > and the three-dimensional zero vector is < 0,0,0 >.

The zero vector is the only vector whose magnitude is 0, and it is the only vector having no
direction. Every other vector is referred to as a nonzero vector. Every nonzero vector has
a positive magnitude and has a direction, and is depicted as a directed line segment.

Two vectors are equal to each other if and only if their corresponding components are

equal.

e Fortwo-dimensional vectors a =< a;,a, >and b =< b,,b, >, a = b if and only if
a; = bl and ap = bz.

e For three-dimensional vectors a = < a;,a>,a;3 >and b =< by,b,,b3 >, a = b if and
onIy ifa1 = b1 and a; = bz and as = b3.

7. Operations on Vectors:

We now consider various operations that can be performed involving vectors. Further
operations will be studied in Sections 12.3 and 12.4.

Scalar multiplication of a vector (i.e., multiplying a vector by a scalar):

e Ifa=<aj,a, > thenca=c < ai,a, >=< cai,car >.

o Ifa=<ua,ar,a3 > thenca=c < ai,az,a; >=< cai,car,cas >.

Note that the result is a vector. The product ca is referred to as a scalar multiple of a.

Whenever we have are multiplying a scalar and a vector, we generally write the scalar
before the vector. In other words, we write ca rather than ac. There are exceptions,
however. (For instance, if v is a velocity vector and dt is the differential of time, then we



would write v dt, rather than the other way around.)
Example 15: 4 < 3,-7 >=<12,-28 >, and -3 < 5,-2,8 >=< —15,6,-24 >.

Vector addition and subtraction:

e Ifa=<a;,ap >and b =< by,b, >, then
a+b=<a;+by,a,+b, > and
a—-b=<a —bl,az—bz >,

o Ifa=c< ai,az,as > and b =< bl,bz,b3 >, then
a+b=<a+bi,a, +by,a3 + b3 >, and
a—-b=< ai —b1,a2—b2,a3—b3 >,

Note that the result of vector addition or subtraction is a vector.

Example 16: < 5,9 >+ <3,-2>=<8,7> and< —4,3,11 > - < -6,7,6 >=<2,-4,5 >.
Note thata+a = 2a, a+a+a = 3a, and so on.

These operations have the following properties:
e 0a = 0. (The scalar zero times any vector gives us the zero vector.)
e c0 = 0. (Any scalar times the zero vector gives us the zero vector.)

e If ca =0, then either c = 0 or a = 0. (If a scalar multiple of a vector gives us the zero
vector, then either that scalar or that vector must be zero.)

e Equivalently: If ¢ # 0 and a = 0, then ca = 0. (The product of a nonzero scalar and
a nonzero vector must be a nonzero vector.)

e la =a. (The scalar 1 times any vector gives us that same vector.)

e a+b=b+a buta—b =+ b-a (Vector addition is commutative, but vector
subtraction is not.)

e (a+b)+c=a+(b+c), but(a—b)—c+a—(b-c) (Vector addition is associative,
but vector subtraction is not.)

e a+ 0 =a. (Any vector plus the zero vector is equal to itself.)

e a—a = 0. (Any vector subtracted from itself is equal to the zero vector.)

e c(a+b)=ca+ch, and c(a—b) = ca—cb (Scalar multiplication of a vector distributes
over vector addition and subtraction.)

® (c+d)a=ca+da, and (c—d)a = ca—da (Scalar multiplication of a vector distributes
over scalar addition and subtraction.)

e (cd)a = c(da) (Scalar multiplication of a vector is associative.)

For any given vector, there is a unique vector that can be added to it so that the sum of the
two vectors is 0. We call this the additive inverse of the given vector. The additive inverse
of a vector a is denoted —a.
e The additive inverse of < ay,a; > is < —ai,—a, >, because < aj,ar > + < —ai,—ap >=
<ajy—aip,ar—a)>= <0,0 >
e The additive inverse of < a1,a,,a3 > is < —ai,—a»,—az >, because
< ap,az,az >+ < -—-ai,—daz,—az >=<a;—dai,dx—dr,az—az >= <0,0,0 >.
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Example 17: The additive inverse of < 2,-5,4 >is — < 2,-5,4 > =< -2,5,-4 >,

The additive inverse of a given vector is also referred to as the negative of that vector, or
as the opposite of that vector, or as the opposite vector.

Properties:

e (—a)=a

o 0=0

e —a=-la

e a—b=a+-b
eb-a=—-(a-b)=-1(a—Db)

The zero vector is the only vector that is its own opposite. Any nonzero vector and its
opposite vector are two distinct vectors.

Any nonzero vector and its opposite vector have opposite directions. (This idea will be
elaborated upon in Section 12.3, where we rigorously address the subject of direction.) The
concept of “opposite direction” cannot be applied to the zero vector, since it has no
direction.

For any nonzero vector a and any nonzero scalar ¢, ca has the same direction as a when ¢
is positive, whereas ca has the opposite direction from a when c is negative. If |c| < 1, then
ca is shorter than a. If |c| > 1, then ca is longer than a. If |c| = 1, then ca has the same
length as a.

For any vector a and any scalar ¢, |ca| = |c||a] = |c|a. (Jc| denotes the absolute value of c.)

Example 18: Ifa =< -6,8 >, then %a =< -3,4 >and -3a =< 18,-24 >. You may confirm
that the lengths of these three vectors are, respectively, 10, 5, and 30.

Vector addition and subtraction (for nonzero vectors) have interesting geometric
interpretations, which we will discuss in class. Here’s a summary of what we will discuss:

e Vector addition by the tip to tail method (better thought of as tail on tip, because
we place the tail of the second vector on the tip of the first). This is also known as
the triangle method of addition.

e Vector subtraction done the same way, but replacing the second vector with its
opposite vector.

e Vector subtraction by the tip to tip (or tail on tail) method, also known as the
triangle method of subtraction.

e Vector addition and subtraction by the parallelogram method.

For any scalars c and d, ca + db is known as a linear combination of the vectors a and b.
e Ifa=<aj,ap >andb =< by,b, >, thenca+db =< ca; +dby,ca, +db, >.
e Ifa=c< ai,az,as > and b =< b1,b2,b3 >, then ca +db =

< cai +dbi,car +dbj,cas + dbs >.
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Note that the result is a vector.

Example 19: Ifa=<7,6 >andb =< 2,5 >, then4a+9b =< 28,24 > + < 18,45 > =
< 46,69 >. Thus, < 46,69 > is a linear combination of < 7,6 > and < 2,5 >.

8. Unit Vectors:
Any vector whose magnitude is 1 is called a unit vector.

o3 4 D I I ' i
Example 20: < +,< >and < 5 Ay Care unit vectors, as you may verify by
computing their lengths.

For any nonzero vector a, there is a unique unit vector having the same direction as a, and
there is a unique unit vector having the opposite direction from a. The former unit vector is
La, and the latter is —La. These vectors can also be written as 2 and -2

e Ifa=<aj,a; >is nonzero, then 2=< 2 22 > gnd - 2= >,

> a
a4z a3 —ay  —ax —a43

e Ifa=<a,aa; >isnonzero,then =< - = =2 >and —2=< —- 2% —& >

Example 21: For the vector < 3,-8 >, the unit vector in the same direction is < -, =% >,

J3 T3

and the unit vector in the opposite direction is < F F >. For the vector < -6,2,-3 >,
the unit vector in the same direction is < 7 , 3 ,‘—73 >, and the unit vector in the opposite
6 -2

direction is < =, == ,7 >,

For any nonzero vector a and any positive scalar ¢, the vector <-a has length ¢ and has the
same direction as a, while the vector —<a has length ¢ and has the opposite direction from
a. These vectors can also be written as ¢2 and —c¢2. (Each vector has length ¢ because
e | = [Fell% ] = c(l) = ¢.)

Example 22: Leta =< -4,3 >, soa =5. %a has length 7 and has the same direction as a,
while —%a has length 7 and has the opposite direction from a.

In two-dimensional space, there are two unit vectors that are special. They are < 1,0 >,
which is denoted i, and < 0,1 >, which is denoted j. These are known as the standard
basis vectors for the x,y plane.

In three-dimensional space, there are three unit vectors that are special. They are
< 1,0,0 >, which is denoted i, < 0,1,0 >, which is denoted j, and < 0,0,1 >, which is
denoted k. These are known as the standard basis vectors for x,y,z space.

In either two or three dimensions, every vector can be expressed as a linear combination of
the standard basis vectors:

e Ifa=<ua,a, > thena = a;i+ aj.
e Ifa=<a,aa; > thena = aii+ axj + ask
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Example 23: < 3,-8 > = 3i-8j, and < —6,-2,5 > = —6i — 2j + 5k.
In two-dimensional space, 0 = 0i + 0j, while in three-dimensional space, 0 = 0i + 0j + Ok.

When a vector is expressed as a linear combination of the standard basis vectors, we say it
is expressed in standard basis form. (Thus, we now have two notations for symbolically
representing any vector, component form and standard basis form.)
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